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ABSTRACT

Generalized adjoint with modified discretization and generalized coarse-grain adjoint are derived for a vector
system of equations that contains parameterized on/off switches. With vector examples, it is shown that the
conventional adjoint minimization may have a convergence problem in multidimensional space. The problem
can be solved by the generalized adjoint with modified discretization or by the generalized coarse-grain adjoint
without modifying the traditional discretization in the forward model.

1. Introduction

Many physical processes in atmospheric models in-
volve parameterized time discontinuities (on/off switch-
es) that do not satisfy the well-known Lipschitiz con-
dition, the condition that ensures the existence, unique-
ness, and continuous dependence of the solution on its
initial condition in the classical sense. In order to derive
the tangent linear and adjoint equations for such a mod-
el, it is necessary to extend the classic concept of so-
lution based on the modern mathematical theory on gen-
eralized functions (see appendix to chap. 6, Courant and
Hilbert 1962). Such an extension was made recently by
Xu (1996a,b, 1997a) for time continuous models.

When the generalized adjoint formulations derived
for time continuous models are applied to time discrete
models, new problems are caused by on/off switches
triggered at discrete time levels by threshold conditions.
In this case, as shown in Xu (1997b), the discrete so-
lution is not continuously dependent on the initial state,
so the cost function contains zigzag discontinuities that
cause a problem in the tangent linearization and adjoint
minimization, but the problem can be solved by mod-
ifying the traditional time discretization with the switch
time determined by interpolation as a continuous func-
tion of the initial state. The problem can also be avoided
by considering the nonlocal coarse-grain geometry of
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the cost function, as proposed by Xu et al. (1998, hence-
forth referred to as XGG98). The generalized coarse-
grain tangent linearization and adjoint provide an al-
ternate approach without modifying the traditional time
discretization but require the integration time step be
sufficiently small.

For the scalar examples in Xu (1997b) and XGG98,
there were only two directions for the gradient of the
cost function in one-dimensional space, so the minimum
of the cost function could be approached by an iterative
procedure as long as the sign of the gradient was cor-
rectly estimated. Thus, although the conventional ad-
joint is inaccurate and not suitable for sensitivity studies,
the inaccuracy may not cause a serious problem for one-
dimensional minimization. This, however, is not the case
for minimization in multiple dimensions. The related
problems will be examined with vector examples in this
paper. The two approaches proposed in Xu (1997b) and
XGG98 will be used to derive the generalized adjoint
and coarse-grain adjoint for the vector examples.

The paper is organized as follows. The analytical
model system and its adjoint are given in the next sec-
tion. The analytical model is discretized in two ways
by using the traditional and modified discretization
schemes in section 3. The discrete generalized tangent
linear model and the coarse-grain tangent linear model
are derived and compared with the conventional tangent
linear model in section 4. Discrete adjoints are derived
in section 5. Three different minimization procedures
are tested and compared in section 6. The results are
summarized with conclusions in section 7.
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2. Model equations

In this paper we use the following modified model
of Lorenz (1963):

d x 5 2px 1 py,t

d y 5 rx 2 zx 2 x,t

d z 5 xy 2 az, (2.1)t

where r 5 r0 1 r1H(c) is the modified Rayleigh number
that contains a jump controlled by the threshold con-
dition of c [ y 2 yc . 0, and H( ) is the Heaviside
unit-step function (see Courant and Hilbert 1962, 622);
p and a are related to the Prandtl number and the aspect
ratio of geometry (in the original model), respectively.
The parameter values used in this paper are p 5 10, a
5 8/3, r0 5 28, r1 5 218, and yc 5 24.5. According
to Lorenz (1963) and Sparrow (1982), for fixed p 5 10
and a 5 8/3, the solution changes regime from chaotic
to oscillatory asymptotic stable when r decreases from
r0 5 28 to r0 1 r1 5 10. With the above parameter
settings, the regime changes are controlled by the thresh-
old condition.

To derive the generalized tangent linear and adjoint
operators, it is convenient to rewrite (2.1) into the fol-
lowing vector form:

dtx 5 F 1 H(c)G, (2.2)

where x 5 (x, y, z)T 5 xi 1 yj 1 zk, F 5 F(x) 5 (2px
1 py)i 1 (r0x 2 zx 2 x)j 1 (xy 2 az)k, and G 5 G(x)
5 r1xj. Here, i, j, and k are unit vectors in the x, y, and
z directions, respectively. Using (3.2) and (4.2) of X96b
with dtc2 5 dty(t2) 5 jTF|t and =c 5 j, one can derive
from (2.2) the following generalized tangent linear and
adjoint operators in the vicinity of an on or off switch
(at t 5 t):

L 5 d 2 P 2 H(y 2 y )Q 2 H9(t 2 t)S, (2.3)t c

T TL* 5 2d 2 P 2 H(y 2 y )Qt c

T2 H9(t 2 t)S , (2.4)

where P 5 P(x) 5 =F 5 [(i]x 1 j]y 1 k]z)FT]T, Q 5
Q(x) 5 =G 5 r1jiT, S 5 S(x) 5 G[(=c)T]/|j · F| 5
r1xjjT/|jTF|, and H9( ) is the unit delta function, the de-
rivative of H( ).

3. Discrete forward models—FM0 and FM1

When the predictor–corrector scheme (Lorenz 1963)
is used to discretize (2.1), the switch time can be de-
termined in two ways, similar to the one-dimensional
examples in XGG98. The first way uses the traditional
discretization, which gives the following discrete model,
denoted by FM0:

x̃ 5 x 1 [F(x ) 1 H(y 2 y )G(x )]Dtn n21 n21 n21 c n21

and

x 5 x 1 {F(x ) 1 F(x̃ )n n21 n21 n

1 H(y 2 y )[G(x ) 1 G(x̃ )]}Dt/2,n21 c n21 n

(3.1)

where F( ) and G( ) are defined as in (2.2) and Dt 5
T/N is the time step. The first formula in (3.1) is the
predictor based on the Euler forward scheme, and the
second formula is the corrector based on the trapezoidal
implicit scheme. Here, as in (3.1) of Xu (1997b) or (2.4)
of XGG98, an on (or off ) switch is triggered in (3.1)
at the discrete time level immediately after the threshold
condition is (or is not) exceeded.

The second way uses a modified discretization, and
the resulting discrete model is denoted by FM1. For a
nonswitch time step, FM1 is the same as FM0. When
an on (or off ) switch is detected, say, at the mth step
by ym $ yc . ym21 (or ym , yc # ym21), the switch time
is determined in FM1 by

yc 5 ym21 1 jTF(xm21)Dt , (3.2)

where 0 # Dt , Dt and t 5 (m 2 1)Dt 1 Dt is the
interpolated switch time. Since the switch in FM1 is
triggered at the intermediate time t (earlier than the
switch time mDt in FM0), a new term should be added
to (3.1) for the mth time step:

x̃ 5 x 1 [F(x ) 1 H(y 2 y )G(x )]Dtm m21 m21 m21 c m21

6 G(x )(Dt 2 Dt)m21

and
x 5 x 1 [F(x ) 1 F(x̃ )]Dt/2m m21 m21 m

1 H(y 2 y )[G(x ) 1 G(x̃ )]Dt/2m21 c m21 m

6 [G(x ) 1 G(x̃ )](Dt 2 Dt)/2, (3.3)m21 m

where 6 signs take plus for an on switch with H(ym21

2 yc) 5 0 and minus for an off switch with H(ym21 2
yc) 5 1.

Shown in Fig. 1 is an example of numerical solution
obtained by integrating FM1 (solid) from t 5 0 to t 5
T 5 200 with Dt 5 0.01 and x0 5 (26.36, 28.27,
21.2)T. During the period of integration, an on switch
is triggered at about t 5 37 when y exceeds the threshold
value of yc 5 24.6. Since the time step is very small
(Dt 5 0.01), the numerical solution obtained by inte-
grating FM0 with the same parameter settings gives a
visually almost-identical curve to that in Fig. 1. These
two nearly identical numerical solutions will be used as
the reference solutions for the verification of the tangent
linear solutions in the next section. The numerical so-
lution obtained from FM1 will be used as the observed
true state for the cost function defined in section 4.

4. Discrete tangent linear models—CTLM0,
GTLM1, and GCTLM

As in XGG98, we denote by CTLM0 the conventional
tangent linear model derived from FM0, by GTLM1 we
denote the generalized tangent linear model derived
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FIG. 1. The three components of the numerical solution obtained
by integrating FM1 from t 5 0 to t 5 T 5 200 with Dt 5 0.01 and
x0 5 (26.36, 28.27, 21.2)T. An on switch is triggered at t 5 0.37
when y exceeds the threshold value of yc 5 24.6.

from FM1, and by GCTLM we denote the generalized
coarse-grain tangent linearization of FM0. The conven-
tional tangent linearization ignores the switch time per-
turbations (or jumps), so d(3.1) gives the following con-
ventional discrete tangent linear model (CTLM0):

dx̃ 5 dx 1 [P(x ) 1 H(y 2 y )Q(x )]dx Dt,n n21 n21 n21 c n21 n21

dx 5 dx 1 [P(x )dx 1 P(x̃ )dx̃ ]Dt/2n n21 n21 n21 n n

1 H(y 2 y )[Q(x )dx 1 Q(x̃ )dx̃ ]Dt/2,n21 c n21 n21 n n

(4.1)

where P( ) and Q( ) are defined as in (2.3).

The generalized tangent linearization considers the
perturbation of Dt in (3.3), and dDt can be determined
from d(3.2):

T T0 5 dy 1 d[ j F(x )]Dt 1 j F(x )dDtm21 m21 m21

T T5 dy 1 j P(x )dx Dt 1 j F(x )dDtm21 m21 m21 m21

or
T T TdDt 5 2[ j 1 j P(x )Dt]dx /[ j F(x )]. (4.2)m21 m21 m21

Substituting (4.2) into d(3.3) gives GTLM1 for the mth
time step at which a switch is triggered:

dx̃ 5 dx 1 [P(x ) 1 H(y 2 y )Q(x )]m m21 m21 m21 c m21

3 dx Dt 6 Q(x )dx (Dt 2 Dt)m21 m21 m21

1 S(x )[I 1 DtP(x )]dx ,m21 m21 m21

dx 5 dx 1 [P(x )dx 1 P(x̃ )dx̃ ]Dt/2m m21 m21 m21 m m

1 H(y 2 y )[Q(x )dx 1 Q(x̃ )dx̃ ]Dt/2m21 c m21 m21 m m

6 [Q(x )dx 1 Q(x̃ )dx̃ ](Dt 2 Dt)/2m21 m21 m m

1 bS(x )[I 1 DtP(x )]dx ,m21 m21 m21 (4.3)

where S( ) is defined as in (2.3), b 5 (1 + x̃m /xm21)2,
and the rule for 6 signs is as in (3.3). For a nonswitch
time step, GTLM1 is the same as CTLM0 in (4.1).

For the mth time step at which a switch is triggered,
GCTLM can be derived by integrating the analytical
tangent linear model [see (2.3)]:

dx̃ 5 dx 1 [P(x ) 1 H(y 2 y )Q(x )]dx Dtm21 m21 m21 c m21 m21m

6 Q(x )dx (Dt 2 Dt) 1 S(x )dx ,m21 m21 m21 m21

dx 5 dx 1 [P(x )dx 1 P(x̃ )dx̃ ]Dt/2m m21 m21 m21 m m

1 H(y 2 y )[Q(x )dx 1 Q(x̃ )dx̃ ]Dt/2m21 c m21 m21 m m

6 [Q(x )dx 1 Q(x̃ )dx̃ ](Dt 2 Dt)/2m21 m21 m m

1 S(x )dx ,m21 m21 (4.4)

where 6 signs are as in (4.3) or (3.3), and the impact
of the delta function is evaluated by

mDt

H9(t 2 t)Sdx dt 5 S(t )dx(t ) ø S(x )dx .E 2 2 m21 m21

(m21)Dt

Note that dDt 5 2jTdxm21/[jTF(xm21)] 1 O(Dt | dxm21|)
ø 2jTdxm21/[jTF(xm21)] in (4.2). When this approxi-
mation is used in the derivation of (4.3), the result re-
duces to (4.4). To the same order of accuracy, (4.4) can
further reduce to

dx̃ 5 dx 1 [P(x ) 1 H(y 2 y )Q(x )]dx Dtm21 m21 m21 c m21 m21m

1 S(x )dx ,m21 m21

dx 5 dx 1 [P(x )dx 1 P(x̃ )dx̃ ]Dt/2m m21 m21 m21 m m

1 H(y 2 y )[Q(x )dx 1 Q(x̃ )dx̃ ]Dt/2m21 c m21 m21 m m

1 S(x )dx ,m21 m21 (4.5)

or even simply to
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FIG. 2. CTLM0 solution (long-dashed) and GCTLM solution
(dashed) obtained from (4.5) in comparison with the nonlinear per-
turbation (solid) obtained from FM0. The reference initial state x0 is
the same as in Fig. 1, and the initial perturbation is dx0 5 0.01x0.
Since Dt 5 0.01 and |F| ø O(10), O(FDt) , O(dx0) , 1 is satisfied.

FIG. 3. As in Fig. 2, but for the GTLM1 solution (dashed) in
comparison with the nonlinear perturbation (solid) obtained from
FM1 for a very small initial perturbation dx0 5 0.01x0 satisfying
O(dx0) # O(FDt) , 1.

dxm 5 dxm21 1 S(xm21)dxm21. (4.6)

Clearly, to the same order of accuracy, GCTLM can
have different forms. GCTLM in (4.4) is most close to
GTLM1; GCTLM in (4.5) contains all the conventional
terms in CTLM0; and GCTLM in (4.6) has the simplest
form. Like the GTLM1 operator in (4.3), the three
GCTLM operators in (4.4)–(4.6) all converge to the
analytical TLM operator in (2.3) as Dt → 0. The CTLM
operator in (4.1), however, does not converge to the
analytical TLM operator in (2.3). For Dt # Dt K 1,
the difference between GCTLM and GTLM1 is much

smaller [by a factor of O(Dt)] than the difference be-
tween CTLM0 and GTLM1. As shown in Fig. 2, the
CTLM0 solution (long-dashed) does not follow the non-
linear perturbation (solid) obtained from FM0 after the
on switch, but the GCTLM solution (dashed) obtained
from (4.5) can follow the nonlinear perturbation. Thus,
as explained in XGG98, GCTLM can be used as a
coarse-grain tangent linear model of FM0 as long as Dt
is sufficiently small. When Dt is not sufficiently small,
GCTLM may not be used as a coarse-grain tangent lin-
ear model of FM0, but it is still a valid approximation
of GTLM1. As shown in Fig. 3, the GTLM1 solution
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FIG. 4. The F(a) curves with gradient computed by CAJM0 and
cost function computed by FM0 at x0 5 (23.86, 28.77, 21.2)T with
Dt 5 0.01 (solid) and Dt 5 0.0001 (dotted).

(dashed) closely follows the nonlinear perturbation (sol-
id) obtained from FM1. The GCTLM solution (dashed
in Fig. 2) also follows the nonlinear perturbation ob-
tained from FM1 (solid in Fig. 3) but not as closely as
the GTLM1 solution.

5. Discrete adjoint and gradient check

The discrete cost function can be defined by
N N

2 2J (x ) 5 |D | Dt 5 |x 2 x | Dt, (5.1)O Od 0 n n obn
n50 n50

where xn 5 xn(x0) is a function of initial state con-
strained by the discrete forward model (FM0 or FM1),
and xobn denotes the observed value of x at the nth time
level. For the numerical experiments in this paper, xobn

is given by the FM1 solution with x0 5 (x0, y0, z0)T 5
(26.36, 28.27, 21.2)T, that is, the solid curve in Fig.
1. Note from (5.1) that discontinuities caused by xn(x0)
in the cost function are independent of observations.
Thus, including random observational errors in xobn will
not affect the nature of the problem examined in this
paper. This is verified by our numerical experiments
with imperfect observations (not shown), so observa-
tional errors are not an issue in this paper. When xn in
(5.1) is constrained by FM1, the minimum of the cost
function is at x0 5 (26.36, 28.27, 21.2)T, which is the
initial state for the solution in Fig. 1. Because the FM0
solution is very close to the FM1 solution (see Fig. 1),
when xn is constrained by FM0, the minimum of the
cost function is almost exactly at the same x0 point of
the initial state for the solution in Fig. 1.

In association with the cost function in (5.1), CTLM0
in (4.1) gives the following conventional discrete adjoint
model (CAJM0):

T Tdx̃* 5 [P (x̃ ) 1 H(y 2 y )Q (x̃ )]dx*Dt/2,n n n21 c n n

Tdx* 5 dx* 1 dx̃* 1 P (x )(dx̃* 1 dx*/2)Dtn21 n n n21 n n

T1 H(y 2 y )Q (x )(dx̃* 1 dx*/2)Dtn21 c n21 n n

1 2D Dt.n (5.2)

For the mth time step at which a switch is triggered,
GTLM1 in (4.3) yields the following generalized dis-
crete adjoint model (GAJM1):

T Tdx̃* 5 [P (x̃ ) 1t3H(y 2 y )Q (x̃ )]dx*Dt/2m m m21 c m m

T6 Q (x )dx*(Dt 2 Dt)/2,m21 m

Tdx* 5 dx* 1 dx̃* 1 H(y 2 y )Q (x )m21 m m m21 c m21

T3 (dx̃* 1 dx*/2)Dt 1 P (x )(dx̃* 1 dx*/2)Dtm m m21 m m

T1 P (x )(dx̃* 1 dx*/2)Dtm21 m m

T T1 [I 1 P (x )Dt]S (x )(dx̃* 1 bdx*)m21 m21 m m

T6 Q (x )(dx*/2 1 dx̃*)(Dt 2 Dt)2D Dt.m21 m m m

(5.3)

Similarly, for the mth time step at which a switch is
triggered, GCTLM in (4.5) yields the following discrete
adjoint model (GCAJM):

T Tdx̃* 5 [P (x̃ ) 1 H(y 2 y )Q (x̃ )]dx*Dt/2,m m m21 c m m

Tdx* 5 dx* 1 dx̃* 1 H(y 2 y )Q (x )m21 m m m21 c m21

T3 (dx̃* 1 dx*/2)Dt 1 P (x )(dx̃* 1 dx*/2)Dtm m m21 m m

T1 S (x )(dx̃* 1 dx*) 1 2D Dt.m21 m m m (5.4)

Over a smooth part of the cost function, the accuracy
of the gradient computed by an adjoint model can be
checked by the truncated Taylor expansion of the cost
function, which leads to the following formula:

F(a) 5 [J (x 1 au) 2 J (x )]/[au · =J (x )]d 0 d 0 d 0

5 1 1 O(a), (5.5)

where u 5 =Jd(x0)/|=Jd(x0)| and a is a scalar much
smaller than unity. When a is small but not as small as
the machine round-off error, one should expect that
F(a) 5 1 1 O(a). When the gradient computed by
CAJM0 is checked by (5.5), a should be sufficiently
small so that the switches do not jump in the FM0
solution. Depending on the reference initial state x0 and/
or time step Dt used in the integration, the required
smallness of a can be very different. The situation is
similar to that in Fig. 6 of XGG98, and the problem is
caused by the noncontinuous dependence of the FM0
solution on the initial state x0. As shown in Fig. 4, with
x0 5 (23.86, 28.77, 21.2)T and Dt 5 0.01, the F(a)
curve (solid) is very close to 1 over the wide range of
10212 , a , 1022. However, when Dt 5 0.0001, the
F(a) curve (dotted) drops quickly far below 1 when a
becomes larger than 1024.

The gradient computed by GAJM1 can be checked
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FIG. 5. The F(a) curve with gradient computed by GAJM1 and
cost function computed by FM1 (solid) at x0 5 (23.86, 28.77, 21.2)T

with Dt 5 0.01 (solid); and F(a) curves with gradient computed by
GCAJM and cost function computed by FM0 at x0 5 (23.86, 28.77,
21.2)T with Dt 5 0.01 (dotted) and Dt 5 0.0001 (dashed).

FIG. 6. Costfunction (contours) and descending process (dotted
lines) in the two-dimensional space (x0, y0) for experiment FM0-
CAJM0 with Dt 5 0.01. The first guess is (x0, y0, z0) 5 (23.86,
28.77, 21.2)T. The gradient computed at each step (numbered se-
quentially) is shown by solid arrow. For clarity, only the first eight
steps are shown.

by (5.5) to a great accuracy. As shown in Fig. 5, the
F(a) curve (solid) is very close to 1 over the wide range
of 10212 , a , 1022, and this result is independent of
x0 and Dt. When the gradient is computed by GCAJM
and the cost function is computed by FM0 with Dt 5
0.01, the F(a) curve (dotted) is always above 1 and the
gradient check fails. However, when the cost function
is computed by FM0 with Dt 5 0.0001, the dotted F(a)
curve in Fig. 5 is very close to 1 over the range of 1022

, a , 1021. On the other hand, the dotted F(a) curve
in Fig. 4 is far below 1 over this range. Thus, when Dt
is sufficiently small, the nonlocal coarse-grain gradient
can be estimated by GCAJM, and GCAJM can be used
as a coarse-grain adjoint model for FM0.

6. Minimization experiments

By using the above-derived three adjoint models,
three minimization methods can be designed. The first
method, denoted by FM0-CAJM0, uses FM0 for the
forward integration and CAJM0 for the backward gra-
dient computation. The second method, denoted by
FM1-GAJM1, uses FM1 for the forward integration and
GAJM1 for the backward gradient computation. The
third method, denoted by FM0-GCAJM, uses FM0 for
the forward integration and GCAJM in (5.4) for the
backward gradient computation. The memoryless quasi-
Newton algorithm (Liu and Nocedal 1988) is used to
search for the minimum of the cost function.

Numerical experiments are performed with Dt 5
0.01. The descending procedures are started from the
same first guess at (x0, y0, z0) 5 (23.86, 28.77, 21.2)T,
with z0 5 zobn 5 21.2 fixed at the observed value. In
this way, the cost function minimum is searched only

in the two-dimensional space (x0, y0), so the descending
steps can be easily illustrated. As shown in Fig. 6 for
the FM0-CAJM0 method, the descending procedure
does not converge to the minimum because the gradients
(shown by solid arrows) computed by CAJM0 do not
follow the global coarse-grain geometry of the cost
function. For clarity, only the first six iterative steps are
shown in Fig. 6, though the iteration is performed up
to 20 steps. After the sixth step, the solution is trapped
in the vicinity of point 6 and there is no improvement
in convergence toward the true minimum. The zigzag
patterns in the cost function contours manifest discon-
tinuities caused by noncontinuous dependence of the
FM0 solution on the initial state. The two-dimensional
surface of the cost function can be viewed as a ‘‘sta-
dium’’ having many steps. The gradient computed by
CAJM0 follows the step surface locally, but the local
geometry can be very different from the global coarse-
grain geometry of the cost function. This explains why
the solution is trapped in the vicinity of point 6 in Fig.
6. When the modified discretization is used in FM1, the
cost function becomes continuous and smooth as shown
in Fig. 7. In this case, the gradients can be correctly
computed by GAJM1, and the descending procedure
converges to the minimum rapidly. Figure 8 shows that
the coarse-grain gradients can be correctly computed by
GCAJM, so the descending procedure can converge ap-
proximately to the minimum for the FM0-GCAJM
method, although the cost function has the same dis-
continuities as in Fig. 6. Figures 9 and 10 show that the
cost function and gradient decrease only slightly for the
FM0-CAJM0 method, but decrease significantly for the
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FIG. 7. As in Fig. 6, but for experiment FMI-GAJM1.

FIG. 9. The cost function Jd(x0) vs iteration steps in experiments
FM0-CAJMO (dotted), FM0-GCAJM (dashed), and FM1-GAJM1
(solid).

FIG. 10. As in Fig. 9, but for |=Jd(x0)| vs iteration steps.FIG. 8. As in Fig. 6, but for experiment FM0-GCAJM.

FM0-GCAJM method, and decrease to the machine zero
for the FM1-GAJM1 method.

Numerical experiments are also performed with dif-
ferent Dt and different first guesses of (x0, y0, z0). In
particular, three different values (0.01, 0.001, 0.0001)
are used for Dt, and 40 different first guesses are selected
(by equally spaced points) along the four boundaries of
the domain in Figs. 6–8. The results of these (3 3 3 3
40) experiments can be summarized as follows. 1) With
the FM0-CAJM0 method, the descending procedure of-
ten does not converge (for 50% of the 40 cases of dif-
ferent first guesses), and the result is very sensitive to
the first guess. 2) With the FM1-GAJM1 method, the
descending procedure always converges rapidly, the fi-
nal point (x0, y0) is very close to the true minimum

point (x0, y0) 5 (23.86, 28.77), and the result is vir-
tually independent of the first guess. 3) When the FM0-
GCAJM method is used with Dt 5 0.01, the descending
procedure converges, and the final point (x0, y0) is close
to the true minimum point for more than 90% of the 40
cases. The convergence is improved dramatically when
Dt is reduced (to 0.001 and 0.0001) in the FM0-GCAJM
method. The rms error of the final points (x0, y0) (started
from 40 different first guesses in each group) with re-
spect to the true minimum point is listed in Table 1 for
each method and each selected Dt. Clearly, the rms er-
rors are large for results of FM0-CAJM0, and the error
does not decrease with Dt. The rms errors are very small
for the results of FM1-GAJM1, and the error decreases
rapidly with Dt. For the results of FM1-GAJM1, the rms
error decreases rapidly from 0.32 to 0.01 when Dt de-
creases from 0.01 to 0.001.
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TABLE 1. The rms error of minimum points (x0, y0) searched by
descending procedures started from 40 different first guesses for each
method and given Dt.

Dt 5 0.01 Dt 5 0.001 Dt 5 0.0001

FM0-CAJMO
FM1-GAJM1
FMO-GCAJM

1.005
1.52 3 1022

0.321

1.088
0.456 3 1022

1.06 3 1022

1.184
0.174 3 1023

0.736 3 1022

In the above experiments, the minimization proce-
dures are performed in the two-dimensional space of
(x0, y0) in order to make clear illustrations (see Figs.
6–8). Additional experiments are also performed with
different initial guesses of x0 and for minimization pro-
cedures in the three-dimensional space of the initial state
(x0, y0, z0) of the modified Lorenz model. The results
remain qualitatively the same.

7. Conclusions

The vector equation system of Lorenz (1963) is mod-
ified and used to study how the generalized adjoint the-
ory and analytical formulations in X96b can be applied
to time discrete models. As in XGG98, the analytical
model system is discretized in two ways by using the
traditional and modified discretization schemes, and the
resulting discrete models are denoted by FM0 and FM1,
respectively. Corresponding to FM0 and FM1, three
types of discrete tangent linear models are derived: the
conventional tangent linear model (CTLM0) derived
from FM0 by ignoring the perturbation of switch time,
the generalized tangent linear model (GTLM1) derived
from FM1, and the coarse-grain tangent linear model
(GCTLM) derived by directly discretizing the analytical
tangent linear equations. From these tangent linear mod-
els, three discrete adjoint models are derived. The results
obtained with vector examples in this paper support the
principle results summarized in the conclusion section
of XGG98.

Vector examples are used in this paper to illustrate
problems in the conventional adjoint minimization and
to examine how the problem can be solved by the gen-
eralized adjoint with modified discretization or by the
coarse-grain adjoint without modifying the traditional
discretization in the forward model. The results are sum-
marized as follows.

1) The conventional adjoint can compute the local gra-
dient of the zigzag discontinuous cost function con-
strained by FM0, but the local gradient can be very
different from the global coarse-grain gradient. This
can cause the conventional adjoint minimization fail
to converge.

2) The above problem can be solved if FM1 is used as
the forward model (in which the switch time is de-
termined by interpolation as a continuous function
of the initial state) and the generalized adjoint is used
to compute the gradient of the cost function con-
strained by FM1.

3) Without modifying the traditional discretization, the
coarse-grain adjoint model can be used to compute
the coarse-grain gradient of the zigzag discontinuous
cost function constrained by FM0. The convergence
of the coarse-grain adjoint minimization can be en-
sured and improved if a small time step is used for
the time integrations of the forward model and back-
ward adjoint model.

4) Observational errors are not an issue for the prob-
lems examined in this paper, because discontinuities
caused by the solution in the cost function are in-
dependent of observations. Actually, all the basic
findings obtained with perfect observations are con-
firmed by numerical experiments with imperfect ob-
servations (not presented in this paper).

5) Although a complete cost function in data assimi-
lation should include a background term, the nature
of the problems examined in this and our previous
studies is independent of the (neglected) background
term.

As shown by Xu (1996a, section 7), when the pa-
rameterized discontinuity is fitted by a continuous or
smooth function of the control variable, the variation of
the switch point is implicitly considered by the variation
of the control variable, and this makes the switch suit-
able for the conventional adjoint method. This type of
treatment was used previously by Verlinde and Cotton
(1993) and Zupanski and Mesinger (1995). The method
is relatively straightforward but requires that the original
threshold condition be modified. The generalized adjoint
proposed by Xu (1997b) does not change the threshold
condition but requires that the traditional discretization
be modified (only in the forward model). The gener-
alized coarse-grain adjoint does not change the original
forward model but requires that the integration time step
be sufficiently small. Each method has certain advan-
tages and disadvantages. Comparisons between these
different methods deserve further studies.
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